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Abstract

A common problem for experimental space physicists is the determination

of the "attitude matrix" T which transforms vectors between representations

in X and Xl coordinate systems according to Vx = TXX' VXI. Solution of this

problem using the standard Eulerian angle techniques is in general tedious

and circuitous. A straightforward, simple, and efficient solution for the

transformation matrix is a "double-cross" transformation, such as

" " " " " " " " tTXX ' = [A, A x B, Ax (A x B)JX [A, A x B, Ax (A x B) JxI,

" "which is calculated from any two directions A and B which are known in both

X and X' coordinates. "The B direction need be known only well enough to

" "define the plane in which A and B lie. The problem of the intersection of

two cones as applicable to attitude solutions is also discussed.



T. Introduction

Experimental space physicists frequently encounter the problem

of determining the attitude of their sensors on rockets or satellites.

The purpose of this report is to present a simple, efficient approach

to the mathematical aspects of the problem of vehicle and sensor

orientation. -It is well known that a (column) vector VX' defined in an orthogonal

coordinate system X' may be transformed to another orthogonal coordinate

system X having the same origin by a transformation of the form

where T is an orthonormal rotation, or attitude, matrix. Due to the

orthonormal property of T, the inverse transformation is performed by

the transpose of T:

A A
The problem we shall address is to determine T(A, B) when any two

A A
directions, A and B, are known in both X and X' representations. (The

mathematics are, of course, equally applicable in terms of the alternative

A A
physical interpretation, that the transformation rotates A and B to new

positions in a fixed coordinate system.)

The usual method of expressing T involves Eulerian angles. (See, for

example, Mechanics texts such as Goldstein [1950J, Marion [1965J, and others,

or applications-oriented volumes such as Thomson [196lJ, Singer [1964J or

Greensite [1970J.) The approach using Eulerian angles is suitable for

physical problems involving rotations through known angles; however, it

is difficult to apply in the situation being considered, and is

cumbersome and expensive for computer applications due to the numerous
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trigonometric functions involved (29 factors which are either the

sine or cosine of one of three angles). We shall derive an expression

II II
for T(A, B) which involves no trigonometric functions.

II. The Double-Cross Transformation

If a matrix M composed of three (or more) column vectors replaces
....
V in Equation (1), then T simultaneously transforms each of the vectors

from one coordinate representation to the other:

(2)

.... ....
Let us use the directions of two vectors A and B, which are known in

both X and X' coordinates, to construct a set of three orthonormal vectors

II II
in each coordinate system. One of several possible sets is A, A x B, and

II II
A x (A x B). The circumflex denotes a vector normalized to unit length.....
II A II
A =~ (equivalent to the direction cosines of the vector), and A x B

denotes that the normalization must be done after the cross product

operation is performed. The relationship of these vectors is indicated

in Figure 1. Since the identity of the vectors is independent of the

coordinate representation, Equation (2) will hold if we take

II II II II
M = [A, A x B, A x (A x B)J

on each side of the equation. Furthermore, M so defined is orthonormal,

so M- 1 = Mt . We may immediately solve for T:

TXX ' = ~ Mxtl

II II II II II II II II t
= [A, A x B, A x (A x B) Jx [A, A x B, A x (A x B) JXI

Because T can transform any vector between the X and Xl coordinate

representations, T determines the relative "attitude" of the two

coordinate systems. It is clear from Equation (3) that information about

the magnitude of Aor Bis unnecessary, and also (see Figure 1) that

(3)
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information about the angle eAB has been lost. In applications, therefore,

because of the sense in which the cross product is taken, A is chosen to

correspond to the quantity whose direction is more accurately known, and B
is used only to define the plane in which both vectors lie. Equation (3)

always has a solution if A and B are not parallel or antipara11el. Obviously,

the choice of coordinate systems X and X' is completely arbitrary. Even

in a dynamic system, Equation (3) holds at any instant. The time dependence

of T may be determined by inserting
,. /I.

A(t) and B(t) in the equation.

Information can be extracted from T concerning the single rotation about

some appropriate axis that will rotate the X' system into conjunction with

the X system. The direction cosines of the axis of rotation are the
,.

components of the eigenvector E of the eigenvalue equation

,.
(T - (lJ) E = O.

It.
The rotation angle about the E direction is

~ = arccos {~ (Trace T - 1)}.

The components of T express the directions of the coordinate axes

xi, xi, x) of the X' system in the X system. To illustrate this we take, as a

",. (I "special case, A, A x B, and A x (A x B) parallel to the axes of the Xl

coordinate system.
,. ,.

T =, (A, A x
XX

Then ~, = (lJ and Equation (3) reduces to

,. It. J (' I 'JB, A x (A x B) X = xl' x2' x3 X·

This special case of the "double-cross" transformation was used by Russell

(1971), who also appreciated the inconvenience of the Eulerian angle

approach.

III. Applications

/I.
In a typical application for rockets or low altitude satellites, A

and ~ might be identified with the directions of the solar and the geomagnetic

field vectors, X' might be spacecraft coordinates, and X might be geocentric

equatorial inertial coordinates.
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1\ 1\

Another choice for A or B might be the total angular momentum vector of

a spinning spacecraft, since it is often known in both inertial and

spacecraft coordinates. Definitions of, and transformations between

common geophysical coordinate systems using the matrix transformation

approach have been reported in the literature by Russell (1971), or

may be found in a Goddard Space Flight Center document (1970).

Not uncommonly, it requires considerable computation to determine

appropriate vectors in the spacecraft coordinate system. To provide

a useful example, we shall consider the determination of the solar
1\

direction, denoted by S, in spacecraft coordinates using three solar

1\ 1\
sensors. Two of these sensors have "look directions" C and D, such

that the angles 8CS and 8DS between the sensor look directions and the

1\
solar direction are measured. Thus S may be considered to lie at the

"intersection of two cones with vertices at the origin, with axes C
1\

and D, and with half-angles 8CS and 8
DS

' as depicted in Figure 2. There

1\ 1\ "
are in general (for C 1 D) two solutions for S, and further information

provided by the third sensor, which must have a look direction not in the
1\ 1\

plane of C and D, is necessary to resolve the ambiguity. (Note: For

1\ "rockets or low altitude satellites, C (or D) might, instead, be the

geomagnetic field vector as determined by an on-board magnetometer.

In this case, the angle (8 CS ) between the geomagnetic and solar directions

need not be measured. This angle is obviously independent of the coordinate

system and can easily be calculated from ephemeris data). The problem

of the intersection of two cones can most easily be solved in the coordinate

system (X") of Figure 2. The direction cosines of the two solutions

1\
for S are:
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S3 cos eCS
cos eDS - cos eCD cos eC882 sin e CD

:3 281 = ± J 1 82 -8 3 (4)

" "where eCD = arccos (C • D), and the ambiguity in 81 must be resolved

" "with additional information. Equatiom (4) are inaccurate if C and Dare

nearly parallel or antiparallel. The cones do not intersect if 81 has

no real root. "To transform 8 from X' 'coordinates to spacecraft (X')

coordinates we use the special case of a "double-cross" transformation:

" " II "MX' = [n x c, C x (D x C), cJx'

M =[lJ =X" .
t

M "X

" II "At this point SX' may be identified with A or B and the attitude matrix

TXX ' found as described previously.
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FIGURE CAPTIONS

"" " "Figure 1: Three orthonormal vectors A, A x B, and A x (A x B) created

-from two known vectors A and B. Information about the

-angle eAB is lost, and knowledge of the magnitudes of A or B

is unnecessary.

Figure 2: Natural coordinate system for finding the intersection of

two cones having the same vertex.
~

The two vectors Sand

"-S are the solutions sought. Information in addition to

" "D, C, e
DS

and eCS must be provided to distinguish between

~ "-Sand S .
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